首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   60篇
  国内免费   8篇
  2023年   5篇
  2022年   1篇
  2021年   3篇
  2020年   20篇
  2019年   32篇
  2018年   22篇
  2017年   14篇
  2016年   9篇
  2015年   4篇
  2014年   14篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有159条查询结果,搜索用时 156 毫秒
21.
Binary NiFe layer double hydroxide (LDH) serves as a benchmark non‐noble metal electrocatalyst for the oxygen evolution reaction, however, it still needs a relatively high overpotential to achieve the threshold current density. Herein the catalyst's electronic structure is tuned by doping vanadium ions into the NiFe LDHs laminate forming ternary NiFeV LDHs to reduce the onset potential, achieving unprecedentedly efficient electrocatalysis for water oxidation. Only 1.42 V (vs reversible hydrogen electrode (RHE), ≈195 mV overpotential) is required to achieve catalytic current density of 20 mA cm?2 with a small Tafel slope of 42 mV dec?1 in 1 m KOH solution, which manifests the best of NiFe‐based catalysts reported till now. Electrochemical analysis and density functional theory +U simulation indicate that the high catalytic activity of NiFeV LDHs mainly attributes to the vanadium doping which can modify the electronic structure and narrow the bandgap thereby bring enhanced conductivity, facile electron transfer, and abundant active sites.  相似文献   
22.
23.
A Ni‐rich concentration‐gradient Li[Ni0.865Co0.120Al0.015]O2 (NCA) cathode is prepared with a Ni‐rich core to maximize the discharge capacity and a Co‐rich particle surface to provide structural and chemical stability. Compared to the conventional NCA cathode with a uniform composition, the gradient NCA cathode exhibits improved capacity retention and better thermal stability. Even more remarkably, the gradient NCA cathode maintains 90% of its initial capacity after 100 cycles when cycled at 60 °C, whereas the conventional cathode exhibits poor capacity retention and suffers severe structural deterioration. The superior cycling stability of the gradient NCA cathode largely stemmed from the gradient structure combines with the Co‐rich surface, which provides chemical stability against electrolyte attack and reduces the inherent internal strain observed in all Ni‐rich layered cathodes in their charged state, thus providing structural stability against the repeated anisotropic volume changes during cycling. The high discharge capacity of the proposed gradient NCA cathode extends the driving range of electric vehicles and reduces battery costs. Furthermore, its excellent capacity retention guarantees a long battery life. Therefore, gradient NCA cathodes represent one of the best classes of cathode materials for electric vehicle applications that should satisfy the demands of future electric vehicles.  相似文献   
24.
The intrinsic polysulfides shuttle, resulting from not only concentration‐gradient diffusion but also slow conversion kinetics of polysulfides, bears the primary responsibility for the poor capacity and cycle stability of lithium–sulfur batteries (LSBs). Here, it is first presented that enriched edge sites derived from vertical standing and ultrathin 2D layered metal selenides (2DLMS) can simultaneously achieve the thermodynamic and kinetic regulation for polysulfides diffusion, which is systematically elucidated through theoretical calculation, electrochemical characterization, and spectroscopic/microscopic analysis. When employed to fabricate compact coating layer of separator, an ultrahigh capacity of 1338.7 mA h g?1 is delivered after 100 cycles at 0.2 C, which is the best among the reports. Over 1000 cycles, the cell still maintains the capacity of 546.8 mA h g?1 at 0.5 C. Moreover, the cell exhibits outstanding capacities of 1106.2 and 865.7 mA h g?1 after 100 cycles at stern temperature of 0 and ?25 °C. The superior low‐temperature performance is appealing for extended practical application of LSBs. Especially, in view of the economy, the 2DLMS is recycled as an anode of lithium‐ion and sodium‐ion batteries after finishing the test of LSBs. The low‐cost and scalable 2DLMS with enriched egde sites open a new avenue for the perfect regulation of the sulfur electrode.  相似文献   
25.
Rechargeable aqueous zinc‐ion batteries (ZIBs) with high safety and low‐cost are highly desirable for grid‐scale energy storage, yet the energy storage mechanisms in the current cathode materials are still complicated and unclear. Hence, several sodium vanadates with NaV3O8‐type layered structure (e.g., Na5V12O32 and HNaV6O16·4H2O) and β‐Na0.33V2O5‐type tunneled structure (e.g., Na0.76V6O15) are constructed and the storage/release behaviors of Zn2+ ions are deeply investigated in these two typical structures. It should be mentioned that the 2D layered Na5V12O32 and HNaV6O16·4H2O with more effective path for Zn2+ diffusion exhibit higher ion diffusion coefficients than that of tunneled Na0.76V6O15. As a result, Na5V12O32 delivers higher capacity than that of Na0.76V6O15, and a long‐term cyclic performance up to 2000 cycles at 4.0 A g?1 in spite of its capacity fading. This work provides a new perspective of Zn2+ storage mechanism in aqueous ZIB systems.  相似文献   
26.
An increase in the amount of nickel in LiMO2 (M = Ni, Co, Mn) layered system is actively pursued in lithium‐ion batteries to achieve higher capacity. Nevertheless, fundamental effects of Ni element in the three‐component layered system are not systematically studied. Therefore, to unravel the role of Ni as a major contributor to the structural and electrochemical properties of Ni‐rich materials, Co‐fixed LiNi0.5+xCo0.2Mn0.3–xO2 (x = 0, 0.1, and 0.2) layered materials are investigated. The results, on the basis of synchrotron‐based characterization techniques, present a decreasing trend of Ni2+ content in Li layer with increasing total Ni contents. Moreover, it is discovered that the chex.‐lattice parameter of layered system is not in close connection with the interslab thickness related to actual Li ion pathway. The interslab thickness increases with increasing Ni concentration even though the chex.‐lattice parameter decreases. Furthermore, the lithium ion pathway is preserved in spite of the fact that the c‐axis is collapsed at highly deintercalated states. Also, a higher Ni content material shows better structural properties such as larger interslab thickness, lower cation disorder, and smoother phase transition, resulting in better electrochemical properties including higher Li diffusivity and lower overpotential when comparing materials with lower Ni content.  相似文献   
27.
Al is introduced into a compositionally graded cathode with average composition of Li[Ni0.61Co0.12Mn0.27]O2 (FCG61) whose Ni and Mn concentrations are designed to vary continuously within the cathode particle. The Al‐substituted full concentration gradient (Al‐FCG61) cathode is tested for 3000 cycles in a full‐cell, mainly to gauge its viability for daily charge/discharge cycles during the service life of electric vehicles (≈10 years). The Al‐substitution enables the Al‐FCG61 cathode to maintain 84% of its initial capacity even after 3000 cycles. It is demonstrated that the Al‐substitution strengthens the grain boundaries, substantiated by the mechanical strength data, thereby delaying the nucleation of microcracks at the phase boundaries which is shown to be the main reason for the cathode failure during long‐term cycling. It also shows that the Al‐substitution decreases the cation mixing and suppresses the deleterious formation of the secondary phase that likely initiates the microcracks. Unlike an NCA cathode, whose depth of discharge (DOD) must be limited to 60% for long‐term cycling, the proposed Al‐FCG61 cathode is cycled at 100% DOD for 3000 cycles to fully utilize its available capacity for maximum energy density and subsequent reduction in cost of the battery.  相似文献   
28.
The purpose of this study was to investigate the formulation variables influencing the drug release from the layered tablets containing chitosan and xanthan gum as matrix component. Increasing the amount of lactose could diminish pH sensitive release behavior of these matrix tablets. Effect of formulation variables on drug release from the prepared three-layered matrix tablets was investigated. The amount of drug loading did not affect the drug release which was influenced by the hydrodynamic force and the matrix composition. An increase in stirring rate correspondingly increased the release rate. Moreover, incorporation of soluble diluents in core or barrier could enhance the drug release. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi’s and zero order) was carried out to study the drug release mechanism. Most dissolution profiles of the prepared three-layered tablets provided a better fit to zero order kinetic than to first order kinetic and Higuchi’s equation.  相似文献   
29.
The aim of this study was to investigate the effect of Eudragit RS 30D, talc, and verapamil hydrochloride on dissolution and mechanical properties of beads coated with "drug-layered matrices". This was accomplished with the aid of a three-factor multiple-level factorial design using percent drug release in 1 and 2 h, T(50), tensile strength, brittleness, stiffness and toughness as the responses. Beads were coated in a fluidized-bed coating unit. Surface morphology and mechanical properties were evaluated by surface profilometry and texture analysis, respectively. No cracks, flaws and fissures were observed on the surfaces. The mechanical properties were dependent on the talc/polymer ratio. The release of verapamil from the beads was influenced by matrix components. Increasing the level of both talc and Eudragit decreased the percent drug released from 67% to 4.8% and from 80.7% to 6.7% in 1 and 2 h, respectively, and increased T(50) from 0.8 to 25.7 h. It was concluded that beads could be efficiently coated with "drug-layered matrices". The release of drug, however, depends on a balance between the levels of drug, talc, and polymer, whereby desired dissolution and mechanical properties could be controlled by the talc/polymer ratio and the level of drug loading.  相似文献   
30.
To investigate the effect of granular structure on resistance to toxic chemicals in UASB (Upflow Anaerobic Sludge Blanket) reactors, normal and broken granules were examined for their ability to degrade acetate with and without the addition of toluene or trichloroethylene as a toxic chemical. Without a toxic chemical, both normal and broken granules degraded the acetate at the same volumetric degradation rate (3.21 mM h–1). However, when 500 l l–1 of toluene or trichloroethylene was added, the acetate-degradation rate of the broken granules was about a third of the rate with normal granules. Therefore, the layered structure of the UASB granules seems to give microbial populations the ability to resist toxic chemicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号